SPECIFICATION: Tainter Gates

PART 1 GENERAL

This specification relates to the design, materials of construction, fabrication, and furnishing of the tainter gate with appurtenant seals, side seal plates, sill, hoist, and accessories required for complete and proper operation of the gate. The tainter gate and hoist will be as manufactured by Rodney Hunt Company or approved equal. Manufacturers shall have a minimum of 10 years experience in the design and manufacture of equipment of this type. Manufacturer shall submit as a minimum a list of 10 projects with tainter gate installations. The list shall include project name, contact, telephone number, years of service, size, and method of operation.

PART 2 MATERIALS

All component parts will be of the type of material shown and conform to the standards designated in this section.

Plate or Structural Steel: ASTM A36, A242, A516, A570, A992

Stainless Steel: ASTM A167 or A276, Type 302 or 304

<table>
<thead>
<tr>
<th>Component Item</th>
<th>ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gate Disc Skin Plate</td>
<td>Steel Plate</td>
</tr>
<tr>
<td>2. Gate Disc Frame Members</td>
<td>Structural Steel</td>
</tr>
<tr>
<td>3. Seals</td>
<td>J-Type, Rubber ASTM D2000</td>
</tr>
<tr>
<td>4. Retainer Bars and Fasteners for Seals</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>5. Fasteners (Studs, Anchors, and Assembly Bolts)</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>6. Metal Contact Surfaces for Bottom Side Seals</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>7. Trunnion Assemblies:</td>
<td></td>
</tr>
<tr>
<td>a) Arm</td>
<td>Structural Steel</td>
</tr>
<tr>
<td>b) Bearing</td>
<td>Self-lubricating, Sleeve Type</td>
</tr>
<tr>
<td>c) Trunnion Shaft</td>
<td>Stainless Steel A564-630, 1075</td>
</tr>
<tr>
<td>8. Embedded Side Seal Plates</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>9. Hoist Base Plate</td>
<td>Structural Steel</td>
</tr>
<tr>
<td>10. Cables</td>
<td>Type 302, S/S IWRC</td>
</tr>
<tr>
<td>11. Cable Drums</td>
<td>ASTM A126 Cast Iron or Fabricated Steel</td>
</tr>
<tr>
<td>12. Shafts</td>
<td>Forged Steel ASTM A668 Class F</td>
</tr>
</tbody>
</table>

Rodney Hunt
46 Mill Street
Orange, MA 01364
Phone: 978-633-4362
www.RodneyHunt.com
PART 3 DESIGN REQUIREMENTS

A. Gate Disc/Arms
The gate disc shall consist of a curved steel skin plate with the center of curvature concentric with
the centerline of the trunnion pins. The curved plate will be reinforced with structural members to
transmit the hydraulic thrust to the trunnion arms. The gate shall be designed to safely withstand the
loads without exceeding 40% of the yield strength or 25% of the ultimate strength of the material
used. The disc deflection shall not exceed 1/360 of the nominal gate width. The bolts connecting the
trunnion arms to the disc shall not be placed in shear. The unsupported length of the trunnion arms
will not exceed an L/r ratio of 120.

B. Seals
Resilient seals shall be placed along the bottom and both sides of the gate to prevent leakage. The
seal attaching hardware will be stainless steel and attached in a manner to permit replacement of the
seals. The side and bottom seals will be of the “J” type. The seals will be assembled to the gate disc
in the manufacturer’s shop. Provisions shall be made to allow for lateral seal adjustment.

C. Trunnions
The trunnions shall be cast or fabricated steel and welded to the trunnion arms. The trunnion arms
shall be equipped with bronze sleeve bearings. Lubrication fittings shall be provided for lubricating the
trunnion bearings. The trunnion assembly shall be designed to be supported by a beam extending
across the opening or brackets anchored into the abutments. Provision shall be made for field
adjustment of the trunnion pins after placement of the gate.

D. Side Seal Plates, Sill
The side and bottom seat plates will be stainless steel having a maximum roughness of
125 micro-inch rms and be supported by anchor bolts in a box-out in the side wall and gate invert.
The seal plates will be adjustable on double nuts at the time of installation and grouted in place after
final alignment.

E. Cable Drum Hoist
Operation of the gate shall be by means of a cable drum hoist using twin interconnected drums
mounted on a fabricated steel base plate. The hoist shall consist of an electric motor drive geared to
interconnecting shafts, cable drums, and cables. The electric motor drive will be self-contained,
complete with a weatherproof motor having Class B insulation, limit and torque switches, integral
reversing controls, and push-button control transformers. The handwheel shall not rotate during motor
operation nor will a locked motor prevent manual operation. The gear reducer shall be of the totally
enclosed worm gear type directly coupled to the electric motor drive. Worm gears will be self-locking
to hold the gate in position without the use of a motor brake. Interconnecting shafts will be forged
steel. Flexible couplings will be provided and will be of the gear type. Cable drums shall be fabricated
steel or cast iron with helical grooves machined in the drums for the cable. The pitch diameter of the
drum shall be a minimum of 24 rope diameters. Hoisting cables will be stainless steel wire rope. The
wire rope will be selected using a safety factor of 5 with respect to the breaking strength of the wire
during normal operation and a safety factor of 2 for stalled motor conditions. A minimum of two wraps
of wire rope shall remain in the drum when the gate is in the lowest position.
PART 4 PAINTING

The gate disc and all exposed steel surfaces shall be blasted to SSPC SP-6.

Hoisting Equipment:
Prime: One (1) coat of Amerlock 400 at 5.0 mils thick
Finish: One (1) coat of Amercoat 450HS, color gray

Immersed Equipment:
Prime: One (1) coat of Amerlock 400 at 5.0 mils thick
Finish: One (1) coat of Amerlock 400 at 5.0 mils thick

PART 5 WELDING

All welding will be done in accordance with AWS D1.1.

PART 6 DRAWINGS

Drawings showing dimensions and essential details required to locate and install the gate, hoist, and accessories shall be submitted for the engineer’s approval. In addition, calculations shall be furnished in detail, including but not limited to: structural sizing of skin plate, trunnion arms, arm bracing, vertical ribs, and horizontal girders; maximum loads for hoist sizing; and corrosion and metallurgical data verifying the manufacturer’s design of the gates furnished.

Drawings and calculations shall be sealed by an engineer registered in the state where the gate will be manufactured.

PART 7 INSTALLATION

The handling, storage, and installation of all parts shall be done by the construction contractor in accordance with the detailed technical installation procedures supplied by the manufacturer and approved by the engineer.